Description

Given non-negative integer kk and positive integer mm, find Eulerian numbers

$$\left\langle 0\atop k\right\rangle,\left\langle 1\atop k\right\rangle,\dots ,\left\langle {m-1}\atop k\right\rangle $$

modulo p=998244353p=998244353.

Where $\left\langle n\atop k\right\rangle =\sum_{j=0}^k(-1)^j\binom{n+1}{j}(k-j+1)^n$.

Input Format

One line consists of integer k,mk,m.

Output Format

Print one line, containing $\left\langle 0\atop k\right\rangle \bmod{p},\left\langle 1\atop k\right\rangle \bmod{p},\dots ,\left\langle {m-1}\atop k\right\rangle \bmod{p}$.

0 10
1 1 1 1 1 1 1 1 1 1

$\left\langle n\atop 0\right\rangle =1,\forall n\geq 0$.

3 10
0 0 0 0 1 26 302 2416 15619 88234

Constraints

The problem contains 44 subtasks. For the nn-th subtask, we have 0k10n+1,1m10n+10\leq k\leq 10^{n+1},1\leq m\leq 10^{n+1}.