Description
Given non-negative integer and positive integer , find Eulerian numbers
$$\left\langle 0\atop k\right\rangle,\left\langle 1\atop k\right\rangle,\dots ,\left\langle {m-1}\atop k\right\rangle $$modulo .
Where $\left\langle n\atop k\right\rangle =\sum_{j=0}^k(-1)^j\binom{n+1}{j}(k-j+1)^n$.
Input Format
One line consists of integer .
Output Format
Print one line, containing $\left\langle 0\atop k\right\rangle \bmod{p},\left\langle 1\atop k\right\rangle \bmod{p},\dots ,\left\langle {m-1}\atop k\right\rangle \bmod{p}$.
0 10
1 1 1 1 1 1 1 1 1 1
$\left\langle n\atop 0\right\rangle =1,\forall n\geq 0$.
3 10
0 0 0 0 1 26 302 2416 15619 88234
Constraints
The problem contains subtasks. For the -th subtask, we have .
京公网安备11010802045784号